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4-Phosphoranylidene-5(4H)-oxazolones 11.
Reactions with Alkylating Agents

R. Mazurkiewicz® and A. W. Pierwocha

Institute of Organic Chemistry and Technology, Silesian Technical University, PL-44100 Gliwice,
Poland

Summary. When treated with alkyl halides at 20-90°C without solvent or in acetonitrile, 4-phos-
phoranylidene-5(4H)-oxazolones (1) give 4-C-alkylation products 4 in good yields. Alkylation of 1
with alkyl triflates in CH,Cl, at room temperature results in O-alkylation products 5. No O-to 4-C-
alkylation rearrangement can be observed. The spectroscopic properties of the alkylation products
are reported and discussed.

Keywords. 4-Phosphoranylidene-5(4H)-oxazolones; Phosphorus ylides; 5(4H)-Oxazolone enolate
ion equivalent; 4-C-alkylation; O-Alkylation; HSAB principle.

4-Phosphoranyliden-5(4H)-oxazolone, 2. Mitt. Reaktionen mit Alkylierungsreagentien

Zusammenfassung. Behandlung von 4-Phosphoranyliden-5(4H)-oxazolonen (1) mit Alkylhalogen-
iden bei 20-90°C ohne Losungsmittel oder in Acetonitril liefert in guten Ausbeuten die 4-C-alky-
lierten Produkte 4. Alkylierung von 1 mit Alkyltriflaten in CH,Cl, bei Raumtemperatur ergibt O-
alkylierte Produkte (5). E6 wurde keine Umlagerung von O-alkylierten zu C-alkylierten Verbindun-
gen beobachtet. Die spektroskopischen Eigenschaften der Alkylierungsprodukte werden berichtet
und diskutiert.

Introduction

Recently we have described the synthesis as well as both physical and spectro-
scopic properties of 4-phosphoranylidene-5(4H)-oxazolones (1), a hardly known
class of phosphorus ylides derived from 5(4H)-oxazolones [1].

As the dipolar resonance structures of ylides 1 (Scheme 1) are isoelectronic
with respect to the resonance structures of enolate ions derived from 5(4H)-
oxazolones (2), one might expect that ylides 1 should display a reactivity pattern
towards electrophilic agents similar to the reactivity of 5(4H)-oxazolone enolates.

Enolates 2 are intermediates of considerable importance in organic syntheses
[2-4]. Their reactions with a variety of electrophilic reagents (e.g. alkylating
[5-7] or acylating agents [8, 9], aldehydes or ketones [4, 10], Michael [2, 3, 11, 12]
and Mannich [3, 13] reagents) are especially useful for the functionalization of the
a-~carbon atom in glycine and other a-amino acids (Scheme 2). In many cases,
however, the synthetic utility of these reactions is strongly restricted due to the
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competitive acylation of the enolate ion by another oxazolone molecule, which
eventually yields useless dimer 3 [5, 14-15]. Ylides 1 are entirely resistant to
dimerization [1]; therefore, they may be considered to be promising synthetic
equivalents of 5(4H)-oxazolone enolates [16—17].
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In this contribution, we report the results of our successful attempts of alkyl-
ating ylides 1. It is worth mentioning that an effective direct alkylation of 5(4H)-
oxazolone enolates is possible only in the case of 5(4H)-oxazolones with a bulky
substituent at position 4, as this variety of 5(4H)-oxazolones is relatively little
susceptible to dimerization [5-6]. Further investigations on the removal of the
phosphonium group from the alkylation products in order to transfom alkylated
ylides into a-functionalized derivatives of glycine are in progress [17].

Results and Discussion

It might be expected from the resonance structures of ylides 1 (Scheme 1) that they
should be ambident nucleophiles with nucleophilic centers on carbons at positions
4 and 2 of the oxazolone ring, on the oxygen of the carbonyl group, and on the
nitrogen bearing a nonbonded electron pair.

When dissolved in methyl iodide and left at room temperature for a few days
or a few weeks, ylides 1a and lc—e undergo methylation at position 4 yielding
phosphonium salts 4. The alkylation product usually precipitates spontaneously
from the reaction mixture (Table 1, procedure A). We have also developed a more
efficient alkylation procedure which consists in heating the ylide with alkyl halide
in acetonitrile in a sealed glass tube to 80 or 90°C for 1 to 24 hours (Table 1,
procedure B). Methoxymethyl iodide reacts easily with ylide 1a in acetonitrile
even at room temperature. This method makes it possible to introduce not only
simple alkyl groups in position 4 of the oxazolone ring, but also, e.g., alkoxy-
methylene, alkoxycarbonylmethylene, or cyanomethylene groups, usually in good
or even very good yields.
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4-C-Alkylation products of ylides derived from triphenylphosphine are crystal-
line compounds, stable at room temperature when protected from moisture, well
soluble in CH,Cl,, CHCl3, and CH3CN, but insoluble in diethyl ether. They can be
purified by dissolving in CH,Cl, or CH;CN and precipitating with diethyl ether.
Ylide 1e, derived from tributylphosphine, reacts smoothly with methyl iodide. The
oily alkylation product 4ea, however, seems to be unstable. The IR spectrum of
the product revealed the expected strong vc—o and ve-n bands at 1819 and
1649 cm™!, respectively; a satisfactory microanalysis has also been obtained

(Table 1). However, our efforts to record clear 'H and '*C NMR spectra of 4ea
product failed.
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The reaction of methyl iodide with ylide 1b possessing a small methyl group at
position 2 leads probably to an unstable mixture of 4-C- and N-methylation pro-
ducts. The IR spectrum of the product contains a strong absorption band at
1768 cm~! which might be assigned to the vc—q absorption of the N-methylation
product, and lower intensity bands at 1821 and 1671 cm™! which probably corre-
spond to the vc—p and vy absorption of the 4-C-alkylation product. We were not
able to get clear 'H and '*C NMR spectra of the obtained substance; however, we
have achieved a satisfactory microanalysis for the formula of isomeric methylation
products (Table 1).

Lobanov et al. [18] have described a similar alkylation of ylide 1a with methyl
iodide yielding a product whose m.p., IR, and "H NMR spectra are in reasonable
agreement with our data concerning compound 4aa. Our results differ, however,
substantially from Lobanov’s results in one point: the Russian authors purified the
alkylation product by dissolving it in methyl alcohol and precipitating it with
diethyl ether, whereas we have found that methyl alkohol at room temperature
easily opens the oxazolone ring, affording the N-benzoyl-a-(triphenylphospho-
nio)alanine methyl ester iodide [17].

The structure of 4-C alkylation products has been confirmed by their spectr-
oscopic properties (IR, 'H, 1°C, and *'P NMR) as well as by satisfactory results of
elemental analyses (see Tables 1 and 2). In spite of prolonged drying in vacuo (0.1-
0.2 mm Hg, 45°C), some phosphonium salts 4 precipitated from methylene chlo-
ride retain one molecule of solvent per one molecule of salt.

As it has been reported in our previous paper [1], the transformation of 5(4H)-
oxazolones into corresponding ylides 1 causes a shift of the carbonyl absorption
band towards lower frequencies by at least 120 cm™! (from 1825-1810 to 1690
1655 cm™!). The shift is a result of the strong coupling between the free electron
pair of the ylide and the carbonyl group. 4-C-Alkylation products 4 again display
the absorption pattern typical for 5(4H)-oxazolones, with two strong, very diag-
nostic bands at 1823-1810cm™! (vc—o) and 1654-1636cm™! (ve_y), which is a
consequence of the lack of a free electron pair on the a-carbon of the oxazolone
ring.

The 'H and *C NMR spectroscopic data presented in Table 2 confirm the
proposed structure of phosphonium salts 4; the values of the *'P chemical shifts
(30.2-28.4 ppm) agree quite well with the range of 27.0-19.1 ppm reported in the
literature for some similar phosphonium salts [19].

The alkylation of ylides 1 with alkyl triflates gave completely different results.
The reactions, which were carried out in CH,Cl, at room temperature (Table 1,
procedure C), yielded O-alkylation products 5 in times up to 1h. In a separate
alkylation experiment with ylide 1a using methyl triflate we didn’t observe (IR)
any signs of a consecutive O- to 4-C-alkylation product rearrangement for several
days. Phosphonium salts 5 were precipitated from the reaction mixtures with
diethyl ether and identified as described above for the 4-C-alkylation products.

There is no absorption of any carbonyl group in the range of 1850-1650 cm™?
in the IR spectra of phosphonium salts 5; the strong absorption bands in the range
of 1620-1600cm™! can be assigned to the stretching vibrations of the conjugated
C=N and C=C bonds. Another characteristic strong absorption near 1270 cm™!
should be attributed to the stretching vibration of the exocyclic C—O bonds. 'H,
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13¢, and *'P NMR spectroscopic data (Table 2) also confirm the proposed structure
of phosphonium salts 5; the *'P chemical shift values (9.7-9.3 ppm) are close to the
value 13.9 ppm quoted by Nesmeyanov et al. [20] for a similar phosphonium salt
(cis-PhsPT"CH=CHOH CI17).

The different course of alkylation of 4-phosphoranylidene-5(4H)-oxazolones
by alkyl halides and alkyl triflates is readily explainable in terms of the hard and
soft acids and bases principle (HSAB) [21]. Alkyl halides, being softer alkylating
agents, attack the ylide at position 4, as the less electronegative C-4 atom is a softer
nucleophilic center of the ambident ylide than the more electronegative oxygen of
the carbonyl group. Alkyl triflates, as harder electrophiles, tend to react preferen-
tially with the oxygen atom of the carbonyl group as the hardest nucleophilic center
of the ylide.

Experimental

Melting points, determined in capillary tubes, are uncorrected. IR spectra were recorded on a Zeiss
Specord M 80 spectrophotometer; the measurements were carried out, unless otherwise noted, in
CH,Cl, (0.2 M) using cells of 0.075 mm. 'H, **C, and *'P NMR spectra were recorded in CDCl; on a
Varian VXR-300 spectrometer at operating frequencies of 300, 75.5, and 121.4 MHz, respectively, in
the FT mode. In the case of 'H and >C NMR spectra, TMS was used as an internal standard;
P NMR spectra were referenced to external 85% phosphoric acid. Alkyl halides, acetonitrile,
benzene, and diethyl ether were purified by distillation and dried over molecular sieves (4 A). The
purification of CH,Cl, has been described previously [22].

Alkylation of 4-phosphoranylidene-5(4H)-oxazolones 1 (general procedures)

Procedure A

A mixture of 4-phosphoranylidene-5(4H)-oxazolone (4 mmol) and methyl iodide (0.16 mol, 10 ml)
was refluxed for 15 min. The reaction mixture was left standing at room temperature for the time
given in Table 1. The precipitated crystals were filtered, washed with benzene and dried in vacuo.
For further purification, the crude phosphonium salt was dissolved in CH,Cl, or acetonitrile, the pure
product was precipitated with a twice as large volume of diethyl ether, filtered, washed with a
mixture of CH,Cl, or acetonitrile with diethyl ether in a ratio of 1:2 (vwV), and dried in vacuo
(0.01-0.02 mmHg) at 45°C for 1-2h.

Procedure B

A mixture of 4-phosphoranylidene-5(4H)-oxazolone (2.5 mmol), alkyl halide (3.75mmol), and
acetonitrile (2 ml), placed in a sealed glass tube, was heated in an oil bath at 80-90°C for 4-24 hours;
in the case of phosphonium salt 4ab, the reaction was carried out at 20°C. The reaction mixture was
evaporataed to dryness in vacuo. The residue was extracted three times with boiling benzene (5 ml)
to remove unreacted ylide. The crude phosphonium salt was dried in vacuo and purified as described
above (Procedure A).

Procedure C

To a stirred solution of 4-phosphoranylidene-5(4H)-oxazolone (1 mmol) in CH,Cl, (5mil), alkyl
triflate (3 mmol) was added at room temperature. After 0.25-1h, the pure O-alkylated product was
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precipitated with diethyl ether (6 ml). The precipitated white crystals were filtered, washed with a
mixture of CH,Cl, and diethyl ether in a ratio of 1:2 (v4), and dried in vacuo (0.01-0.02 mmHg) at
45°C for 1-2h.
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